000 | 02000cam a2200229 i 4500 | ||
---|---|---|---|
008 | 220901s2021 cc a b 001 0 eng | ||
020 | _a9789391043834 | ||
042 | _apcc | ||
082 | 0 | 4 |
_a005.74015 _bLAK |
100 | 1 | _aLakshmanan, Valliappa, | |
245 | 1 | 0 |
_aPractical machine learning for computer vision : _bend-to-end machine learning for images |
250 | _aFirst edition. | ||
260 |
_aMumbai _bShroff Publishers & Distributors Pvt. Ltd. _c2021 |
||
300 | _axvi, 463 pages : | ||
520 | _aThis practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data pre-processing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Pre-process images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models | ||
650 | 0 | _aComputer vision. | |
650 | 0 | _aMachine learning. | |
700 | 1 | _aGörner, Martin, | |
700 | 1 | _aGillard, Ryan, | |
906 | _aBusiness Analytics | ||
942 |
_2ddc _c1 |
||
999 |
_c98126 _d98126 |